
Audit
USDV

Presented by:

OtterSec contact@osec.io

JamesWang james.wang@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:james.wang@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-USDV-ADV-00 [high] | Broke Retry Of Failed Message . 6
OS-USDV-ADV-01 [high] | Incorrect Message Length Check . 7
OS-USDV-ADV-02 [med] | Incorrect Reward Capping . 8
OS-USDV-ADV-03 [low] | Incorrect Color Duplicate Check . 9

05 General Findings 10
OS-USDV-SUG-00 | Missing Gap Storage Slot . 11
OS-USDV-SUG-01 | Refill RateLimiter Before Setting Rate . 12
OS-USDV-SUG-02 | Unchecked Fee Sum . 13

Appendices

A Vulnerability Rating Scale 14

B Procedure 15

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 15

01 | Executive Summary

Overview
USDV engaged OtterSec to perform an assessment of the usdv program. This assessment was conducted
between October 2nd and October 13th, 2023. For more information on our auditing methodology, see
Appendix B.

Key Findings
Over the course of this audit engagement, we produced 7 findings in total.

In particular, we discovered that incorrect function overrides prevent the retry of failed messages (OS-
USDV-ADV-00), mistakes in message length checks hinder the proper receipt of sendAndCallmessages
(OS-USDV-ADV-01), and incorrect reward capping may cause a temporary denial of service on reward
distribution until admin intervention (OS-USDV-ADV-02).

We also recommended updates to the rate limiter setting to ensure rate limits are fully respected (OS-
USDV-SUG-01). We further suggested implementing checks against the sum of multiple fees to limit the
impact of operator configuration mistakes on users (OS-USDV-SUG-02).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 15

02 | Scope
The source code was delivered to us in a git repository at github.com/LayerZero-Labs/usdv. This audit
was performed up to commit e20bf33.

All contracts in packages/usdv/evm/contracts/contracts/usdv and
packages/usdv/evm/contracts/contracts/Vault, excludingMessagingV2.solarewithin
audit scope.

A brief description of the programs are as follows:

Name Description

usdv usdv includes the implementation of a custom ERC20 that realizes the token coloring algo-
rithm proposed by USDV. It also includes messaging components responsible for sending
messages through USDV.

vault Vault handles usdvminting based on whitelisted collateral tokens. It is also responsible for
pro-rata reward distribution with respect to the amount of usdv eachminter color holds.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 15

https://github.com/LayerZero-Labs/usdv
https://github.com/LayerZero-Labs/usdv/commit/e20bf331e10a84294ef2424202fc5bc364b12e23

03 | Findings
Overall, we reported 7 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 2

Medium 1
Low 1

Informational 3

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 15

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-USDV-ADV-00 High Resolved Failed messages in MessagingV1 cannot be retried due
to overriding incorrect function.

OS-USDV-ADV-01 High Resolved Incorrectmessage length check inMsgCodecdecode logic
makes it impossible to receive sendAndCallmessage.

OS-USDV-ADV-02 Medium Resolved VaultManager.distributeReward does not prop-
erly utilize capped rateLimitedRewardInUSDV, re-
sulting in reverts when result exceeds mint rate limit.

OS-USDV-ADV-03 Low Resolved VaultManager.clearPendginRemint does not up-
date lastColor in for loop, rendering color duplication
check dysfunctional.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 15

USDV Audit 04 | Vulnerabilities

OS-USDV-ADV-00 [high] | Broke Retry Of Failed Message

Description

InMessagingV1.sol, theprocessingof incomingmessages ishandledbynonblockingLzReceive,
while_nonblockingLzReceive has been left unimplemented. However, sinceretryMessage only
invokes _nonblockingLzReceive, leaving it unimplemented means that the retry function won’t
execute the actual message reception logic when called.

packages/usdv/evm/contracts/contracts/usdv/MessagingV1.sol SOLIDITY

// @notice overrides the parent function to use _message as calldata
function nonblockingLzReceive(

uint16 /*_srcChainId*/,
bytes calldata /*_srcAddress*/,
uint64 /*_nonce*/,
bytes calldata _message

) public override {
// only internal transaction
require(msg.sender == address(this), "MessagingV1: only self");

uint8 msgType = _message.msgType();

if (msgType == MsgCodec.MSG_TYPE_SEND) {
[...]

}
}

//@notice do nothing
function _nonblockingLzReceive(

uint16 _srcChainId,
bytes memory _srcAddress,
uint64 _nonce,
bytes memory _payload

) internal override {}

Remediation

Move the message handling logic into _nonblockingLzReceive so retryMessage can also utilize
it.

Patch

Resolved in a58fe68.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 15

https://github.com/LayerZero-Labs/usdv/commit/a58fe68985beedd9d9536db2162004d35ab15940

USDV Audit 04 | Vulnerabilities

OS-USDV-ADV-01 [high] | Incorrect Message Length Check

Description

MsgCodec is responsible for data serialization and deserialization before pushingmessages to LayerZero.
ThedecodeSendAndCallMsg function attempts toperforma sanity checkon the lengthof deserialized
data but performs the opposite of the required comparison. Since all messages for SendAndCallMsg
will have at least 53 bytes, this incorrect check renders the entire API unusable.

usdv2/packages/usdv/evm/contracts/contracts/messaging/libs/MsgCodec.sol SOLIDITY

function decodeSendAndCallMsg(bytes calldata _message) internal pure returns
(SendAndCallMsg memory) {↪→

if (_message.length >= 53) revert InvalidSize();
[...]

}

Remediation

Assert against the correct condition _message.length < 53.

Patch

Resolved in e216fb0.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 15

https://github.com/LayerZero-Labs/usdv/commit/e216fb0aec40122496d90afe1f918ff5870dbda1

USDV Audit 04 | Vulnerabilities

OS-USDV-ADV-02 [med]| Incorrect Reward Capping

Description

VaultManager uses mintRateLimiter to limit the amount of USDV that can be minted for each
token over time. Since rewards are also distributed in the form of minting USDV, they should also be
subject to rate limits.

To allow distribution when the total reward exceeds the cap, VaultManager calculates the minting
limit and uses it to determine how much reward to process when distributeReward is called.
However, a mistake is made, and the calculated and capped rateLimitedRewardInUSDV is not used
in later calculations, nullifying the attempt.

packages/usdv/evm/contracts/contracts/vault/VaultManager.sol SOLIDITY

function distributeReward(address[] calldata _tokens) external nonReentrant
whenNotPaused {↪→

[...]
for (uint i = 0; i < _tokens.length; i++) {

address token = _tokens[i];
Asset.Info storage asset = assetInfos[token];

uint rewardInUSDV = asset.distributable();

asset.mintRateLimiter.refill();
uint limit = asset.mintRateLimiter.tokens;

uint rateLimitedRewardInUSDV = rewardInUSDV > limit ? limit : rewardInUSDV;
if (rateLimitedRewardInUSDV == 0) continue; // skip if no reward

_mint(token, address(this), rewardInUSDV.toUint64(), color, 0x0, false);
[...]

}
[...]

}

In extreme conditions where the total unclaimed reward exceeds the maximumminting capacity of the
target token, it becomes impossible to distribute any reward until Operators intervene and temporarily
raise the minting capacity.

Remediation

Use the calculated rateLimitedRewardInUSDVwhenminting reward.

Patch

Resolved in 68b82c7.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 15

https://github.com/LayerZero-Labs/usdv/commit/68b82c7feb3d10078efda1e135d87ba0a8df04ca

USDV Audit 04 | Vulnerabilities

OS-USDV-ADV-03 [low] | Incorrect Color Duplicate Check

Description

In clearPendingRemint, the for loop checks the current color against the local variable lastColor
to ensure that user passed _deltas are sorted and do not contain duplicate colors. However, since
lastColor is never updated within the for loop, this check does not work as intended.

packages/usdv/evm/contracts/contracts/vault/VaultManager.sol SOLIDITY

function clearPendingRemint(Delta[] calldata _deltas) external nonReentrant
whenNotPaused {↪→

int64 totalDelta;

Delta calldata delta;
uint32 lastColor = 0;
for (uint i = 1; i < _deltas.length; i++) {

delta = _deltas[i];
if (delta.color <= lastColor) revert InvalidColor(delta.color); //

duplicated↪→

_clampPendingRemint(delta);
_burnVST(delta.color, delta.amount, false);
totalDelta += delta.amount;

}
[...]

}

Although other checks within clearPendingRemint and _burnVST protect the state and render this
coding mistake unexploitable, it is still imperative to address this bug and remediate appropriately.

Remediation

Update lastcolorwithin for loop.

Patch

Resolved in f9f5497.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 15

https://github.com/LayerZero-Labs/usdv/commit/f9f5497b04daf7869d9c2d3c53729463e5ca64c0

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-USDV-SUG-00 USDVBase does not contain gap slots to guard against potential storage collisions
in future upgrades.

OS-USDV-SUG-01 Refill RateLimiter before setting new rate so that the previous rate will be
fully respected.

OS-USDV-SUG-02 Sum of _minterRemintFeeBps and _operatorRemintFeeBps are not
checked to not exceed 100%.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 15

USDV Audit 05 | General Findings

OS-USDV-SUG-00 | Missing Gap Storage Slot

Description

By default, Solidity utilizes a linear storage layout, meaning that the storage for child contracts follows
directly after inherited parent contracts. Consequently, if a contract undergoes an upgrade and the parent
contracts increase their storage usage, it will overlap with the storage that was originally assigned for
child contract usage.

The typical approach to prevent such overlapping is to pre-allocate spare slots in the parent contract. In
the event of an upgrade where a parent contract requires more storage, these slots are then utilized. This
ensures independence between parent and child contract storage.

USDVBase is missing these gap slots. Although the current versions of USDVMain and USDVSide don’t
use any storage, and the immediate risk of storage collisions is minimal, it is advised to adhere to best
coding practices, as bugs of this nature can result in severe consequences.

Remediation

Add gap slots at the end of USDVBase contract.

packages/usdv/evm/contracts/contracts/usdv/MessagingV1.sol DIFF

abstract contract USDVBase is IUSDV, ERC20PermitUpgradeable {
[...]

+ uint256[49] private __gap;
}

Patch

Resolved in 80b9b21.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 15

https://github.com/LayerZero-Labs/usdv/commit/80b9b210b35a11ba468e1f067db0f758fd6addb6

USDV Audit 05 | General Findings

OS-USDV-SUG-01 | Refill RateLimiter Before Setting Rate

Description

RateLimiters are used to limit the speed at which USDV can be minted or burned with respect to
certain collateral tokens. In the current implementation, when operators attempt to update the refill
rate of RateLimiters, the rate is immediately modified, without any preceding refill. As a result, the
time between the most recent refill and the configuration of the new rate will utilize the updated rate
instead of the initial rate, which is not optimal.

packages/usdv/evm/contracts/contracts/vault/VaultManager.sol SOLIDITY

function setRate(address _token, uint64 _rate) external onlyRole(Role.OPERATOR) {
assetInfos[_token].mintRateLimiter.setRate(_rate);

}

packages/usdv/evm/contracts/contracts/vault/libs/RateLimiter.sol SOLIDITY

function setRate(Info storage _self, uint64 _rate) internal {
_self.rate = _rate;

}

Remediation

Perform a refill before setting a new rate, so that at any moment, the current
RateLimiter.rate is fully respected.

Patch

Resolved in 6527986.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 15

https://github.com/LayerZero-Labs/usdv/commit/65279862fdc01462d7e2a357fbcf8ee574c35bfb

USDV Audit 05 | General Findings

OS-USDV-SUG-02 | Unchecked Fee Sum

Description

Operators are permitted to set the fees collected by operator and minter during remints. The
current implementation checks that each individual fee does not exceed 100% of the reminted token
amount, but fails to verify the total sum of these fees.

packages/usdv/evm/contracts/contracts/usdv/Operator.sol SOLIDITY

function setOperatorRemintFeeBps(uint16 _operatorRemintFeeBps) external onlyOwner {
require(_operatorRemintFeeBps <= 10000, "Operator: invalid

operatorRemintFeeBps");↪→

operatorRemintFeeBps = _operatorRemintFeeBps;
emit OperatorRemintFeeBpsChanged(_operatorRemintFeeBps);

}

function setMinterRemintFeeBps(uint16 _minterRemintFeeBps) external onlyOwner {
require(_minterRemintFeeBps <= 10000, "Operator: invalid minterRemintFeeBps");
minterRemintFeeBps = _minterRemintFeeBps;
emit MinterRemintFeeBpsChanged(_minterRemintFeeBps);

}

Remediation

Implement checks to ensure the sum of fees does not exceed 100%

Patch

Resolved in 34a5c5d.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 15

https://github.com/LayerZero-Labs/usdv/commit/34a5c5d57841b533d3bd51c158e2eb126fe07819

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings may be found in the General Findings section.

Critical Vulnerabilities that immediately result in a loss of user funds with minimal precondi-
tions.

Examples:

• Misconfigured authority or access control validation.
• Improperly designed economic incentives leading to loss of funds.

High Vulnerabilities that may result in a loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions.
• Exploitation involving high capital requirement with respect to payout.

Medium Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion throughmalicious input.
• Forced exceptions in the normal user flow.

Low Low probability vulnerabilities, which are still exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions.

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.
• Improved input validation.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 15

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
executionmodel. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to bemore “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 15

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-USDV-ADV-00 [high] | Broke Retry Of Failed Message
	OS-USDV-ADV-01 [high] | Incorrect Message Length Check
	OS-USDV-ADV-02 [med] | Incorrect Reward Capping
	OS-USDV-ADV-03 [low] | Incorrect Color Duplicate Check

	General Findings
	OS-USDV-SUG-00 | Missing Gap Storage Slot
	OS-USDV-SUG-01 | Refill RateLimiter Before Setting Rate
	OS-USDV-SUG-02 | Unchecked Fee Sum

	Appendices
	Vulnerability Rating Scale
	Procedure

