
Page of 1 77 Paladin Blockchain Security

Smart Contract
Security Assessment

For USDV
27 October 2023

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents 2

Disclaimer 4

1 Overview 5

1.1 Summary 5

1.2 Contracts Assessed 6

1.3 Findings Summary 7

1.3.1 Global Issues 8

1.3.2 VaultManager 8

1.3.3 Asset 9

1.3.4 Vault 9

1.3.5 Governance 9

1.3.6 USDVBase 10

1.3.7 USDVMain 10

1.3.8 USDVSide 10

1.3.9 Colors 10

1.3.10 Operator 11

1.3.11 Messaging 11

1.3.12 MessagingV1 11

1.3.13 MsgCodec 11

2 Findings 12

2.1 Global Issues 12

2.1.1 Issues & Recommendations 13

2.2 vault/VaultManager 20

2.2.1 Privileged Functions 24

2.2.2 Issues & Recommendations 25

2.3 vault/Asset 43

2.3.1 Issues & Recommendations 44

Page of 2 77 Paladin Blockchain Security

2.4 vault/Vault 46

2.4.1 Issues & Recommendations 46

2.5 vault/Governance 47

2.5.1 Issues & Recommendations 48

2.6 USDV/USDVBase 51

2.6.1 Privileged Functions 53

2.6.2 Issues & Recommendations 54

2.7 USDV/USDVMain 59

2.7.1 Privileged Functions 59

2.7.2 Issues & Recommendations 60

2.8 USDV/USDVSide 61

2.8.1 Privileged Functions 61

2.8.2 Issues & Recommendations 61

2.9 USDV/Colors 62

2.9.1 Issues & Recommendations 63

2.10 USDV/Operator 65

2.10.1 Privileged Functions 65

2.10.2 Issues & Recommendations 66

2.11 USDV/Messaging 67

2.11.1 Privileged Functions 67

2.11.2 Issues & Recommendations 68

2.12 USDV/MessagingV1 69

2.12.1 Privileged Functions 70

2.12.2 Issues & Recommendations 71

2.13 USDV/MsgCodec 74

2.13.1 Issues & Recommendations 75

Page of 3 77 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains the right to re-use any and all knowledge and expertise gained during the audit
process, including, but not limited to, vulnerabilities, bugs, or new attack vectors. Paladin is
therefore allowed and expected to use this knowledge in subsequent audits and to inform any third
party, who may or may not be our past or current clients, whose projects have similar
vulnerabilities. Paladin is furthermore allowed to claim bug bounties from third-parties while doing
so.

Page of 4 77 Paladin Blockchain Security

1 Overview
This report has been prepared for the USDV contracts on the Ethereum, Arbitrum,
Optimism, BNB Smart Chain and Avalanche networks. Paladin provides a user-
centred examination of the smart contracts to look for vulnerabilities, logic errors
or other issues from both an internal and external perspective.

1.1 Summary
Project Name USDV

URL TBC

Platform Ethereum, Arbitrum, Optimism, BNB Smart Chain, Avalanche

Language Solidity

Preliminary
Contracts

https://github.com/LayerZero-Labs/usdv/tree/
9715304f0ce7e4c2156e58b76937d80af4bdb8bd/packages/usdv/evm/
contracts/contracts
- usdv/
- vault/

Excluded contracts:
- usdv/MessagingV2.sol

Resolution https://github.com/LayerZero-Labs/usdv/tree/
79dd57db6efa04b16fbd56276e5beac28ebbd6a1/packages/usdv/evm/
contracts/contracts

Page of 5 77 Paladin Blockchain Security

https://github.com/LayerZero-Labs/usdv/tree/9715304f0ce7e4c2156e58b76937d80af4bdb8bd/packages/usdv/evm/contracts/contracts
https://github.com/LayerZero-Labs/usdv/tree/79dd57db6efa04b16fbd56276e5beac28ebbd6a1/packages/usdv/evm/contracts/contracts

1.2 Contracts Assessed

Name Contract
Live Code
Match

VaultManager Proxy (ETH):
0x2A30E3C5c9DaF417663Dd3903144B394a82C999b

Implementation (ETH):
0x903d58a8fa472eb671689d79d708841999703c0b

Asset Dependency

Vault Dependency

Governance Dependency

USDVBase Dependency

USDVMain Proxy (ETH):
0x0E573Ce2736Dd9637A0b21058352e1667925C7a8

Implementation (ETH):
0x0f4c265cfda2f0ba07537014687dbe6f22062785#code

USDVSide ARB/OP/BSC/AVAX Proxy:
0x323665443CEf804A3b5206103304BD4872EA4253

ARB/OP/BSC/AVAX Implementation:
0xc298e2a4e05d60e6495c0e8e445def88eaa23bee

Colors Dependency

Operator ETH : 0xE5feD5b0f777F3244D8523F7FC41EF61147cDf4c
ARB : 0xE5feD5b0f777F3244D8523F7FC41EF61147cDf4c
OP : 0x0fC841AbDa2AcF9c4c531D22A0cF1cF08aF1155e
BSC : 0xE5feD5b0f777F3244D8523F7FC41EF61147cDf4c
AVAX: 0xE5feD5b0f777F3244D8523F7FC41EF61147cDf4c

Messaging Dependency

MessagingV1 ETH : 0x35E8d1DA73e927fA6E9B01892de0cAB468f647dF
ARB : 0x35E8d1DA73e927fA6E9B01892de0cAB468f647dF
OP : 0xE5feD5b0f777F3244D8523F7FC41EF61147cDf4c
BSC : 0x35E8d1DA73e927fA6E9B01892de0cAB468f647dF
AVAX: 0x35E8d1DA73e927fA6E9B01892de0cAB468f647dF

MsgCodec Dependency

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

Page of 6 77 Paladin Blockchain Security

1.3 Findings Summary

Classification of Issues

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

1 - 1 -

2 2 - -

8 6 1 1

13 11 1 1

14 12 2 -

Total 38 31 5 2

 Low

 Informational

 Governance

 High

 Medium

Severity Description

Issues under this category are where the governance or owners of the
protocol have certain privileges that users need to be aware of, some of which
can result in the loss of user funds if the governance’s private keys are lost or
if they turn malicious, for example.

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Governance

 Informational

 High

 Medium

 Low

Page of 7 77 Paladin Blockchain Security

1.3.1 Global Issues

1.3.2 VaultManager

ID Severity Summary Status

01 Governance risk: The codebase is fully upgradeable and multiple
roles have highly centralized degrees of control over the system

02 Risk Management: Contract lacks additional safeguards for “worst-
case-scenarios”

03 Minter attribution will not be perfectly accurate due to the
asynchronous nature of a cross-chain environment

04 Allowing users to freely define adapter options for cross-chain
communication might be an excessive privilege

PARTIAL

INFO

RESOLVED

RESOLVED

RESOLVED

GOV

INFO

MEDIUM

ID Severity Summary Status

05 clearPendingRemint erroneously reduces the pending remint
further for negative deltas which get burned, allowing these to be
re-burned

06 Read-only reentrancy: distribute() contains an incorrect value
when it is called during reentrancy within mint and redeem

07 Minting remains possible even when the minter is marked as paused,
even though this should not be possible

08 clearPendingRemint lacks a nonReentrant modifier

09 Frontend phishing risk: _receiver can be configured for mint and
redeem even when the user calls these directly

10 Many operator interactions do not trigger a liveness ping

11 Lack of default value validation on various registration functions can
be a configurational hazard

12 Adding non-standard tokens as a collateral asset would severely
break the codebase

13 mint presently does not return whether the recipient’s color was
successfully re-assigned, making it more difficult than needed for
integrations to validate this

14 Lack of appropriate caps on the fees

15 OPERATOR can overwrite the enforced color directly causing a state
discrepancy

16 Lack of safeCast usage within various sections of the contract

LOW

ACKNOWLEDGED

MEDIUM

LOW

LOW

MEDIUM

RESOLVED

LOW

RESOLVED

RESOLVED

ACKNOWLEDGED

RESOLVED

RESOLVED

LOW

PARTIAL

RESOLVED

RESOLVED

LOW

INFO

HIGH

LOW

RESOLVED

LOW

RESOLVED

Page of 8 77 Paladin Blockchain Security

1.3.3 Asset

1.3.4 Vault

1.3.5 Governance

17 Token inputs should be explicitly validated to be registered within
the contract’s functions that interact with tokens

18 Typographical issues RESOLVED

RESOLVED
INFO

INFO

ID Severity Summary Status

19 credit does not adhere to checks-effects-interactions

20 Typographical issues

LOW

INFO RESOLVED

RESOLVED

ID Severity Summary Status

21 Gas optimizations PARTIALMEDIUM

ID Severity Summary Status

22 safeFeeTransfer can be gas-griefed by an exploiter to avoid paying
the redemption fee in certain theoretical instances

23 safeFeeTransfer should use something like functionCall as it
will succeed even when calling an EOA

24 Typographical issues RESOLVEDINFO

LOW
RESOLVED

MEDIUM
RESOLVED

Page of 9 77 Paladin Blockchain Security

1.3.6 USDVBase

1.3.7 USDVMain

1.3.8 USDVSide

No issues other than the ones in USDVBase were found.

1.3.9 Colors

ID Severity Summary Status

25 An exploiter is able to keep negative deltas for prolonged periods
“in-flight”, preventing them from being settled to the mainnet

26 Lack of denylist and to validation on send increases the likelihood of
these tokens to be stuck in transit

27 Allowing operators to add colors manually could lead to
configurational errors

28 Typographical issues

RESOLVED

LOW
RESOLVED

RESOLVED
MEDIUM

INFO

LOW

PARTIAL

ID Severity Summary Status

29 remintAck lacks a whenNotPaused modifier when the fee is zero

30 Colors appear to not be explicitly validated for the deltas RESOLVED

RESOLVEDMEDIUM

INFO

ID Severity Summary Status

31 NIL color could accidentally be added if communication
malfunctions or an operator adds it

32 Typographical issues RESOLVED

LOW
RESOLVED

INFO

Page of 10 77 Paladin Blockchain Security

1.3.10 Operator

1.3.11 Messaging

1.3.12 MessagingV1

1.3.13 MsgCodec

ID Severity Summary Status

33 Typographical issuesINFO RESOLVED

ID Severity Summary Status

34 Typographical issuesINFO RESOLVED

ID Severity Summary Status

35 The contract does not support retrying failed non-blocking
messages due to incorrectly overriding _nonblockingLzReceive

36 The contract attempts to support LayerZero token payment support
but fails at doing so, bricking the contract if such a token is ever
configured

37 Typographical issues

RESOLVED

INFO

HIGH

RESOLVED

PARTIAL

MEDIUM

ID Severity Summary Status

38 Typographical issues RESOLVEDINFO

Page of 11 77 Paladin Blockchain Security

2 Findings

2.1 Global Issues

The issues listed in this section apply to the protocol as a whole. Please read
through them carefully and take care to apply the fixes across the relevant
contracts.

Page of 12 77 Global Issues Paladin Blockchain Security

2.1.1 Issues & Recommendations

Issue #01 Governance risk: The codebase is fully upgradeable and multiple
roles have highly centralized degrees of control over the system

Severity

Description The USDV system is novel and innovative, thus the developing team
determined that there should be a degree of control over it, as new
requirements might arise when this goes into production, or
limitations might get discovered. We understand and agree with the
fact that this is a codebase where being able to address those
concerns over time through contract upgrades makes sense.

However, for users, this poses a governance risk. If any of the
governance keys are ever compromised, all value within the system
could be compromised. Furthermore, all approvals to the various
contracts could be drained.

Here is a list of various roles which are of most relevance users:

- Proxy admins [HIGH RISK]: The admins of the VaultManager
and the token contracts are able to adjust the code
implementation freely. A malicious admin can drain all value in
these contracts and upgrade them to drain approvals as well.

- VaultManager OWNER [HIGH RISK]: Can set themselves as any
of the roles within the VaultManager. Can register new fake
collateral to drain the vault.

- VaultManager OPERATOR [MEDIUM RISK]: Can set redemption
fee to 100%.

- MessagingV1 owner [HIGH RISK]: Can pass on the MESSAGING
role to a malicious contract and can fully configure the LayerZero
stack to allow fake messages to be accepted.

- USDV OWNER [HIGH RISK]: Can change the MESSAGING role to
do the above as well.

- USDV OPERATOR [MEDIUM RISK]: Can fully pause all operation
on the token.

- USDV FOUNDATION [MEDIUM RISK]: Can blacklist specific
addresses.

GOVERNANCE

Page of 13 77 Global Issues Paladin Blockchain Security

Recommendation Consider only granting limited approvals with the frontend to avoid
incentivizing users in having open allowances to the system.

Consider locking down the critical roles within the system and
documenting what these roles can do and how they can affect users.
Strong, reputable and diverse multi-signature wallets should be
used.

Resolution
The client has indicated they will move these role to reputable
multi-signature wallets.

PARTIALLY RESOLVED

Page of 14 77 Global Issues Paladin Blockchain Security

Issue #02 Risk Management: Contract lacks additional safeguards for “worst-
case-scenarios”

Severity

Description The USDV system is presently not robust against failure of either
collateral tokens or chains. If a collateral token is hacked,
malfunctions or depegs, this will likely drain all value within USDV.
As such scenarios are more common than we would like, it is
absolutely crucial for a multi-collateral system to add safeguards
against this.

Specifically, arbitrage will cause the de-pegged token to be
deposited to redeem all non-depegged collaterals. This will turn the
vault’s whole collateral into a fully de-pegged version. If that token
subsequently de-pegs to zero, the USDV system is valueless.

Furthermore, as USDV gets deployed simultaneously on several
chains, we again find ourselves in a “weakest link” scenario as the
system trusts any individual chain’s consensus fully. If any of these
individual chains is compromised and can start creating fake
messages, the whole system breaks.

It should be noted that writing safeguards against these vectors that
cannot be DoS’ed is challenging. We typically recommend adding
time-weighted limits that slowly move up and down over time.

We would like to finish the description of this issue with a reiteration
of how strong and important sensible safeguards can be. Just a
handful of safeguard lines around the TVL can literally reduce the
impact of any unknown exploit vector to just 10% of that TVL. This
is insanely valuable and we believe it should be considered in
complex systems like this.

Of course, the client needs to keep in mind that the impact is not
limited to the TVL: If USDV over mints on any of the chains, this
would cause all paired liquidity to get drained which could be
significant value as well. This is unfortunately less easy to safeguard
with a handful of lines (except for mint caps on all chains but this is
difficult as it can block messaging).

MEDIUM SEVERITY

Page of 15 77 Global Issues Paladin Blockchain Security

Recommendation Consider first and foremost safeguarding the collateral. This is the
core value of the system and remaining (partially) collateralized in
black-swan events is what we would heavily recommend as a
primary design goal. This means that adding “simple” (non-DoS-
able) safeguards that prevent the VaultManager’s collateral from
being drained on short notice are probably ideal. One such an
example could be a time-weighted TVL limit — e.g., TVL of the
collateral must be within an upper and lower limit, and these limits
shift up and down with the actual TVL as time passes (eg. at most
10% per day). Such time weighted caps would significantly reduce
the maximum impact of any given exploit, and pretty much
guarantee that at least some portion of the value within the system
can be recovered after an exploit.

Remember that exploiters can also specifically abuse the fact that
caps exist by strategically causing the caps to revert at times that
suit them. Specifically, frequency limits tend to be bad as exploiters
can loop to trigger them (e.g. total number of redemptions).

For cross-chain risks, it is less trivial to add sensible safeguards.
Adding “routes” with limited “throughput” between all of the chains
may make some sense but this is relatively difficult to implement
within the current design and may make it bloated. Especially since
transfers are free, this is a challenge. The easiest solution here
seems to address this off-chain via LayerZero’s innovative Precrime
solution. We strongly recommend to add safeguards if the token
gets deployed on many chains.

Page of 16 77 Global Issues Paladin Blockchain Security

Resolution
The most important risk, token dependency, has been addressed to
a degree which is acceptable to the client (though this degree is
obviously subjective and might be insufficient in practice, depending
on the circumstances).

Rate limits have been added for minting and redeeming with the
vault. This means that the underlying collateral, given that all else
works, can only be stolen at the given rate limits their rates, and this
means that impact is limited to these rates for the collateral being
drained through any given exploit.

The client also indicated that they have built precrime tools to
mitigate the cross-chain risk to a large extent, but Paladin is not
able to validate these due to the off-chain nature of them. Users
should of course be careful as precrime is extremely novel at this
point.

We remind the users that rate-limits only manage risk for the
underlying collateral. In an exploit to the actual USDV token (and
not the collateral), tokens paired with USDV and so forth might be
at risk still. Lending protocols using USDV might be at risk still. This
list is of course not limited by the examples mentioned above.

UPDATE: During deployment, a change was made to these rate
limits that caused a bug if they are set from 0 to a positive number.
In this case, the limits will instantly refill fully. We have pointed this
out during the live match and the client is aware of this — they will
update this the next time they need to redeploy the operator and
rate limiter contracts.

Note that this sending rate limit which is introduced also is not
extremely robust as it is enforced on the sending chain and not the
receipt chain. If a sending chain is compromised, this limit can of
course also be circumvented.

RESOLVED

Page of 17 77 Global Issues Paladin Blockchain Security

Issue #03 Minter attribution will not be perfectly accurate due to the
asynchronous nature of a cross-chain environment

Severity

Description VaultManager on Ethereum defines the central ledger where
minters are attributed their portion of the collateral rebase rewards.
As recolors happen on the sidechains through transfers for example,
this ledger needs to be updated accordingly. However, due to the
asynchronous nature of these updates within the system, these
updates might only get updated within the central ledger hours
later, causing a tracking error for the yield distribution.

Though this is a fundamental and accepted property of the system,
we thought it worthwhile to explicitly document this for the users.

Recommendation This is a fundamental feature of the system and therefore cannot be
resolved in the current design. One potential solution in a different
design is to track average color supplies on all the sidechains and
periodically (e.g. daily) sync these to mainnet, then those time-
weighted average supplies are used to distribute the yield of that
day. It should be noted that in flight supplies would not be trackable
in this mechanism, though this is an acceptable trade-off and is not
necessarily considered “inaccurate”.

It should be noted that this proposed “solution” has a different sort
of tracking error, specifically when yield is very volatile over time.

Resolution

INFORMATIONAL

This is by design. This issue is marked as resolved as the client has
indicated they have carefully simulated the maximum impact of this.
No changes were made.

RESOLVED

Page of 18 77 Global Issues Paladin Blockchain Security

Issue #04 Allowing users to freely define adapter options for cross-chain
communication might be an excessive privilege

Severity

Description All functions that involve cross-chain communication allow for the
user to freely define the adapter parameters. This appears to be by
design within the LayerZero system (e.g. the user should be able to
freely set these).

However, this does mean that if a new adapter parameter can ever
get misinterpreted by the off-chain components to cause the
message to not be automatically delivered, an exploiter can abuse
this to keep negative deltas in transit for longer. Furthermore, if any
of the future adapter parameters can do anything unknown which
might not be desired to be configurable by the user, this could pose
a risk as well.

Recommendation Consider this carefully — if it is possible to only allow for the
specific parameters that are important to be provided, this might be
safer.

Resolution

INFORMATIONAL

The client has indicated this is by design and has re-assured us that
they will carefully validate any adapter parameters evolutions.

RESOLVED

Page of 19 77 Global Issues Paladin Blockchain Security

2.2 vault/VaultManager

VaultManager represents the primary contract for the USDV system. It allows users
to mint USDV by supplying RWAs, which are subsequently stored within the
VaultManager. Additionally, it acts as the primary source of truth to keep track of
all minters and which portion of the supply is attributed to them. This is relevant
since all rebasing rewards of the collateralized tokens (the RWA yield) is attributed
pro-rata to these minter addresses according to the portion of the supply they
represent. These minters will be referenced as “colors” throughout the codebase,
where “color” is simply the identifier given to an individual minter. It should be
noted that a color’s minter address can be passed on over time, to allow for key
updates.

From the last paragraph, it can be gathered that “the correct attribution of the RWA
collateral yield to the minters” is the main requirement and design goal for the
USDV token. This is the problem it aims to solve. It does so by keeping track of the
total supply allocated to any individual minter/color within the VaultManager.
Whenever RWA rewards accrue, these rewards are allocated on a pro-rata basis to
these minters according to these supply distributions.

Although this is quite simple by itself, the system becomes more complex once we
realize that these supplies are transferred between users, and if a user transfers
tokens to a recipient which is actually related to a different minter, that supply
should probably be relabeled (called “recolored” in the rest of the report) to the
recipient’s color. The system therefore adds a set of recoloring rules for transfers
which will be further described in the USDVBase portion of this audit. The system
becomes even more challenging when we consider a multi-chain context. As tokens
get recolored on side-chains due to transfers (see the previous phrase), these
recolorings must be propagated to the VaultManager, otherwise the VaultManager
will continue to incorrectly attribute RWA yield to outdated minters/colors.

Page of 20 77 VaultManager Paladin Blockchain Security

This propagation logic, which forwards the minter supply differentials (called
“deltas” in the rest of the report) to the VaultManager is the primary source of
complexity within the USDV system. Deltas can be sent from chain to chain using
LayerZero, but will eventually be sent to Ethereum, where the VaultManager is
deployed. These deltas can then be synced with the VaultManager, which
essentially just means that it will update its records of which minter/color owns
which portion of the supply.

It should therefore be very clear that at any point in time, the “source of truth”,
which is the VaultManager’s record keeping, is very likely to be outdated. This
means that the reward distribution for RWA tokens will almost never exactly be
correct. However, the system defines a propagation logic with the goal of converging
to correct reward distribution over time.

That wraps up the high level overview of the USDV and VaultManager system. Below
we will further explain the specifics of this contract:

The OWNER, which is going to be a multi-signature wallet, is responsible for
registering collateral tokens using registerAsset. The vault exclusively supports
positively rebasing tokens where 1 nominal token is always worth exactly $1. It does
not support tokens which have a fee on transfer, negative rebase potential, or a
likelihood of de-peg. The last bit means that the system collateralizes the USDV
token exactly 1:1. If any of the collateral de-pegs, this will have a direct impact on
the solvency of the system. Though this is a design choice, we will recommend
several safeguards throughout this report to limit the impact of such an event.
However, the client has also indicated to us that collateral will be extremely strictly
whitelisted and not many tokens will be part of this collateral.

Tokens can be minted by anyone by calling the mint function. To do so, users
provide a number of collateral tokens and the receiver receives an identical number
of USDV tokens in return. During minting, the caller defines the desired “color” of
these tokens (read: the desired minter these tokens should be attributed to). This
color will be assigned to the tokens in case the recoloring rules of the receiver

Page of 21 77 VaultManager Paladin Blockchain Security

permit it, otherwise these tokens are colored according to the current color of the
receiver. More about these rules can be read within the USDVBase portion of the
audit.

USDV can be redeemed back to the underlying collateral by calling the redeem
function on the vault. In this case, a set of deficit colors can be provided.
Accumulated negative deltas within the USDV token can be consumed directly this
way, and are offset by a potential positive delta of the user’s color, which was just
actually burned. It should be noted that this deficit logic is effectively neutral in the
actual supply of these colors: it burns a set of colors, but the pending negative delta
of these colors is reduced proportionally. The redeemed amount might not be fully
burned in the user’s assigned color, but any unburned portion is taken from the
pending positive delta of that color instead, which would’ve been minted at a later
point.

A redemption fee initially configured at 0.1 applies. This redemption fee can be
reconfigured to between 0.1% and 100% of the redeemed amount by the OPERATOR.
Users should be careful to demand that all roles (operator, owner, foundation,
proxy) are carefully safeguarded to avoid that this fee is set to an excessive value.

Anyone can trigger the distribution of accumulated rebases to the minters by calling
distributeReward on the vault. This iterates over a provided set of rebase tokens
and records the number of tokens that have been added to the vault since the last
call (excluding tokens added via mint or removed via redeem). These rewards can
be withdrawn by the configured minter, or the OPERATOR who is capable of
withdrawing them by first marking the minter as paused, or forcing their address to
rotate to a new one. An OWNER, LIQUIDITY_PROVIDER and OPERATOR fee are
deducted from the rebase rewards, before they are granted to the respective
minters. The LIQUIDITY_PROVIDER fee is initially set to 20% and the OPERATOR fee is
initially set to 30%. The OWNER fee is initially set to 1% and can be set to at most 3%.
The other fees can typically be adjusted freely, though the codebase incorporates a
safeguard where a different role configures the limit of this fee.

Page of 22 77 VaultManager Paladin Blockchain Security

An initial single asset is configured as collateral: STBT.

The OWNER is capable of pausing the contract, which effectively pauses all non-
privileged interactions on the vault.

The OPERATOR can be re-assigned by the FOUNDATION role if said operator does not
make a transaction with the vault manager for over 30 days. It should be noted that
adjusting the OPERATOR address is currently seen as an interaction, meaning that the
30 day cooldown period sets in at that time. This is a design choice but does mean
that the OPERATOR needs to wait the whole cooldown if they accidentally
misconfigured the address. Since the OWNER can re-assign any role, they can of
course still reset the OPERATOR to bypass this mistake.

The contract, alongside other key contracts, is upgradeable. This means that the
proxy admin is capable of freely adjusting the logic of this contract. If this admin is
compromised, or becomes malicious, this means that the contract can be upgraded
to a malicious version to not only drain all collateral, but also all open approvals by
users. We highly recommend the team and users to be diligent with validating the
quality of this proxy admin. At the very least, this should be a reputable multi-
signature set-up.

UPDATE: After the audit, a DONOR role was introduced. Mints from this role do not
mint actual USDV tokens, though the accounting values are still adjusted. This
means that those donated tokens are essentially stuck in the vault without being
eligible to be distributed as yield or withdrawn. As this is rather odd behavior, we
recommend that the client be careful with this post-audit feature.

Page of 23 77 VaultManager Paladin Blockchain Security

2.2.1 Privileged Functions
• setPaused [OWNER]

• setRateLimiter [OWNER, introduced as a resolution]

• registerAsset [OWNER]

• setAssetEnabled [OWNER]

• setRole [OWNER or current role account, FOUNDATION can also assign

OPERATOR if no operator tx occurred for 30 days]

• setFeeBpsCap [OWNER can set OPERATOR/LIQUIDITY_PROVIDER fee cap,

FOUNDATION can set its own fee cap]

• setFeeBps [OPERATOR can set FOUNDATION and their own fee,

LIQUIDITY_PROVIDER and OWNER can set their own fee]

• withdrawFees [OPERATOR can withdraw FOUNDATION and their own fee,

LIQUIDITY_PROVIDER and OWNER can withdraw their own fee]

• registerMinter [OPERATOR]

• setUSDVVaultColor [OPERATOR]

• setColorPaused [OPERATOR]

• ping [OPERATOR]

• rotateMinter [OPERATOR]

• withdrawReward [minter while minter not paused, otherwise OPERATOR]

Page of 24 77 VaultManager Paladin Blockchain Security

2.2.2 Issues & Recommendations

Issue #05 clearPendingRemint erroneously reduces the pending remint
further for negative deltas which get burned, allowing these to be
re-burned

Severity

Description clearPendingRemint allows pending remint deltas to be offset
against each other and subsequently burned/minted to the actual
color’s supply.

An example could be: pendingRemint = {“blue”: 10, “green”:
-5}. In this example, clearPendingRemint would allow up to 5 blue
supplies to be minted as long as an equal number of green supplies
are burned. The pendingRemint values would subsequently be
updated to for example {“blue”: 5, “green”: 0}.

However, the codebase contains a critical error within the remint
reduction (increase towards 0) for the negative remints:

Line 325

pendingRemint[delta.color] += delta.amount;

Since delta.amount is negative for these values, pendingRemint is
in fact reduced for these values. This means that in the example, the
final pendingRemint would equal {“blue”: 5, “green”: -10}.
This would break essential properties of the system and effectively
break the whole system due to the fundamental accounting being
broken. Over time, all pending remints would become negative and
positive deltas would no longer be incorporated in the supply,
breaking the contract

Recommendation Consider subtracting delta.amount instead as this value is negative
and we want to move the pendingRemint towards zero within this
function.

Resolution

HIGH SEVERITY

The recommended change has been introduced.

RESOLVED

Page of 25 77 VaultManager Paladin Blockchain Security

Issue #06 Read-only reentrancy: distribute() contains an incorrect value
when it is called during reentrancy within mint and redeem

Severity

Description The functions interacting with collateral tokens do not fully adhere
to checks-effects-interactions. This is also impossible as the
distributable() function uses the balance of the token directly,
making it nearly impossible to organize the code in a fashion where
this function always returns the exact correct value on any
reentrancy. This is because the function which actually updates this
value, the token transfers, could call a reentrancy before or after
the actual balance update.

This issue has been marked as medium severity as read-only
reentrancies can be detrimental to derivative systems which expand
upon this contract as they might call functions such as
distributable and assume their value is correct. An exploiter is
then able to call these via a reentrancy and cause the derivative
application to incorrectly receive a different number of tokens that
are distributable, potentially exploiting this application.

This has famously occurred with multiple apps building on top of
Curve in the past, which has a read-only-reentrancy vulnerability as
well.

Recommendation Consider enforcing a nonReentrant modifier with any balanceOf
interaction as these balances are not correct in the intermediary
reentrant states.

Resolution

MEDIUM SEVERITY

ACKNOWLEDGED

Page of 26 77 VaultManager Paladin Blockchain Security

Issue #07 Minting remains possible even when the minter is marked as
paused, even though this should not be possible

Severity

Location Line 197

// @dev set paused to true to disable minter from minting

Description The contract defines logic allowing the OWNER of the contract to
disable specific minters from being allowed to be minted from.
Once disabled, they should no longer be usable. However, presently
this check is improperly implemented allowing for mint still be
called.

It should be noted that this issue is very difficult to resolve given that
re-colorings will always remain possible on side-chains, effectively
allowing minting to a paused minter.

Recommendation Consider adding a requirement within the _mint function if desired.
Consider documenting that this check is not effective against
preventing minting with that minter color.

Resolution
The mint function is now prevented from being called within the
VaultManager for that color.

RESOLVED

MEDIUM SEVERITY

Page of 27 77 VaultManager Paladin Blockchain Security

Issue #08 clearPendingRemint lacks a nonReentrant modifier

Severity

Description The contract has been extremely consistent with adding
nonReentrant modifiers to any external function which can be
called by regular users. However, this modifier was left out with
clearPendingRemint, which reduces the overall security
guarantees that the codebase can make with regards to reentrancy
prevention.

This issue is only marked as low severity as we could not find any
way of exploiting a reentrancy by calling this function from any of
the interactions within the contract (mint/redeem). However, this is
by no means a reason not to guard this function as it is extremely
tedious to make reentrancy security guarantees over a codebase
that does not adhere to checks-effects-interactions. We strongly
urge the client to add this guard as well.

Recommendation Consider enforcing a nonReentrant modifier with any balanceOf
interaction as these balances are not correct in the intermediary
reentrant states.

Resolution RESOLVED

LOW SEVERITY

Page of 28 77 VaultManager Paladin Blockchain Security

Issue #09 Frontend phishing risk: _receiver can be configured for mint and
redeem even when the user calls these directly

Severity

Description The codebase supports minting and redeeming such that the
resulting tokens are sent to a provided _receiver address that is
different from the sender. This is very useful as the vault might be
used by intermediary contracts like zappers, which can then directly
transfer the assets to the user with these functions.

However, these parameters are not so useful for users, and even
worse, users might be misled into signing a transaction where they
accidentally set the receiver as a different wallet than their own as
many wallets do not decode these signatures properly for the user.

Recommendation Consider adding a requirement that the receiver must be equal to
msg.sender if msg.sender is the same as tx.origin. This
effectively bans EOAs from minting and redeeming to a different
wallet:
if (msg.sender == tx.origin && _receiver != msg.sender)

 revert OnlyContract();

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 29 77 VaultManager Paladin Blockchain Security

Issue #10 Many operator interactions do not trigger a liveness ping

Severity

Location Line 48-51

modifier onlyRole(Role _role) {

 if (msg.sender != govInfo.roles[_role]) revert

Unauthorized();

 _;

}

Description The codebase allows the FOUNDATION to re-assign the OPERATOR if an
OPERATOR has not made any transactions for more than 30 days.
This is done by updating a ping timestamp whenever the operator
interacts. However, in many interactions, this ping does not
currently occur.

Recommendation Consider adding an if statement to the onlyRole function which
issues a ping whenever the role is equal to the OPERATOR role.

Resolution

LOW SEVERITY

RESOLVED

Page of 30 77 VaultManager Paladin Blockchain Security

Issue #11 Lack of default value validation on various registration functions
can be a configurational hazard

Severity

Description The contract facilitates the registration of assets and minters. When
registering an asset, a collateral token address is provided. When
configuring a minter, the minter address is provided.

Throughout the codebase, however, the address(0) value is seen as
a special address as it represents the unset token and minter.

Because this value is special, it should not be allowed to be
configured.

rotateMinter should also check that the new address is not zero
and more importantly it must validate that the minter is already
configured, as it can rotate a non-existent color at the moment!

Several view functions do not revert for non-existent values.
Consider whether it makes sense to more explicitly handle these
cases as they may cause issues for integrations who incorrectly
assume that non-existent values do exist. We are fine with this being
unchanged as long as such integrations are careful.

Finally, it might make sense to explicitly prevent certain colors such
as 0 and THETA from being configured with setUSDVVaultColor.
However, these colors are typically cannot be set within the current
implementation of the USDV token so this might be considered less
relevant.

Recommendation Consider explicitly preventing the default value in all places of the
codebase. Any “special” values should be explicitly prevented
throughout the codebase. Consider only allowing rotateMinter to
be called for registered colors and with a non-zero new address.

Having special meanings for specific values is considered bad
practice. Consider also refactoring the code to have a bool
registered value within the relevant minter and asset struct. Since
there is still room within the storage of the existing slots of these
structs, this hardly comes at a gas cost penalty and improves the
explicitness of the codebase.

Resolution
The client has taken steps to validate such values more explicitly.

RESOLVED

LOW SEVERITY

Page of 31 77 VaultManager Paladin Blockchain Security

Issue #12 Adding non-standard tokens as a collateral asset would severely
break the codebase

Severity

Description The contract does not support various non-standard tokens, and is
only designed to work with rebasing stablecoins that are strictly
pegged to $1.

The following ERC20 types are explicitly not supported within the
current design:

- Fee-on-transfer: This breaks deposits as the mint function does
not actually record how much tokens were received.

- Negative rebase tokens: This causes an underflow exception in
the distribution calculation, causing it to revert.

- Reentrancy tokens: Though theoretically supported, the
codebase does not fully adhere to checks-effects-interactions
which has resulted in us finding at least one read-only reentrancy
if a reentrancy token is added. Even if that vulnerability is
patched, we strongly recommend against adding reentrancy
tokens as it is easy to miss reentrancy exploits in a codebase
which does not fully adhere to CEI. It should be noted that since
the rebasing logic uses balanceOf, writing this codebase in CEI is
not easily possible.

- Tokens which can de-peg: If a collateral token becomes worth
less than $1, users can arbitrage by mass depositing the token
and redeeming it for other tokens. There is no automated
liquidation or backstop system at this point. Any token with any
form of de-peg risk should therefore be avoided, alongside the
addition of safeguards which we recommend.

- Tokens which return malicious balances (e.g. through a proxy
compromised upgrade): This would cause an excessive upgrade.
We will make recommendations to limit this in a separate issue.

- Tokens that can be frozen: If the underlying collateral is frozen by
its issuer, this could cause an issue for the USDV token as users
would not be able to redeem these collateral tokens again.

LOW SEVERITY

Page of 32 77 VaultManager Paladin Blockchain Security

- USDV: Over time, the client may decide to add non-rebasing
stablecoins as collateral, and manually supply yield for them by
transferring it to the vault. One such special case could be when
usdv is added as a recursive collateral. Though this makes very
little sense in our mind, it would be detrimental for the vault
contract which would effectively break as it holds and transfers
usdv for its fee and distribution logic.

Recommendation Consider explicitly disallowing the USDV address to be registered as
a collateral token to explicitly prevent this case. Consider internally
documenting that all above token types are not permitted as
collateral. Consider adding safeguards as recommended in a
separate issue to limit the impact of depeg and token compromise.

Resolution
- Fee on transfer tokens: Not planned to be supported
- Reentrancy tokens: Client has taken steps to make the codebase

mostly secure against it but will consult with auditors again before
adding such tokens

- De-peg risk: Client has added configurable mint/redeem rate
limits on the vault.

- Malicious balances: The above mint limit also applies to yield
distribution

- Tokens with a risk of being frozen: Not explicitly dealt with but
the client indicated they will carefully vet this.

- USDV: Not planned to be supported

RESOLVED

Page of 33 77 VaultManager Paladin Blockchain Security

Issue #13 mint presently does not return whether the recipient’s color was
successfully re-assigned, making it more difficult than needed for
integrations to validate this

Severity

Description As a recipient’s color is not always overridden when tokens are sent
to a recipient, there may be cases where the _color parameter
within mint is effectively ignored, and where the _receiver just
retains the color they already have. In this case, certain integration
contracts might be reluctant to make such a mint succeed.

It is difficult for these integrations to validate that the _receiver in
fact did either recolor or was already in the correct color. This must
be done in a subsequent call. It may make more sense to return this
state as a boolean value.

Recommendation Consider whether it makes sense to return a boolean within the mint
function to indicate whether the _receiver is now colored
appropriately in the provided _color.

Resolution
The client has indicated they do not need this.

RESOLVED

LOW SEVERITY

Page of 34 77 VaultManager Paladin Blockchain Security

Issue #14 Lack of appropriate caps on the fees

Severity

Description Most of the fees can be set disproportionately. For example, the
redemption fee could be set to 100%, resulting in users receiving
exactly nothing after they redeem their tokens.

Since the contract is upgradeable, this does not really reduce the
security for users as they already need to trust the teams managing
the contracts, but more realistic caps might make sense.

Furthermore, the LP + OPERATOR fees can sum to a value greater
than 100%. This does not appear to be a problem as it is a fee on
top but does not make much economical sense given that there is
no incentive to remint at that point.

Finally, when the caps are in fact set, the fees are not accordingly
reduced if they are greater than the caps.

Recommendation Consider whether it makes sense to cap the absolute redemption
value to a more realistic value. Consider at the very least capping
the sum of the two aforementioned fees to 100% whenever these
are configured (the caps can remain at 100%), as otherwise
underflow would occur.

Resolution

LOW SEVERITY

Redemption can still be set arbitrarily high but the value of the two
fees now must sum to at most 100%.

PARTIALLY RESOLVED

Page of 35 77 VaultManager Paladin Blockchain Security

Issue #15 OPERATOR can overwrite the enforced color directly causing a state
discrepancy

Severity

Location Line 342

_mint(token, address(this), rewardInUSDV.toUint64(),

usdvVaultColor, 0x0, false);

Description The distribution logic assumes that the enforced color of the vault
was the one configured via setUSDVVaultColor. However, this color
may have been overwritten directly within USDV by the operator, as
the operator can re-assign the recolorer of any address.

Consider whether it makes sense to instead get the vault’s enforced
color directly at the beginning of distributeReward and removing
usdvVaultColor all together.

Recommendation Consider adding a bool registered to the collateral struct and
consistently checking it for any collateral interaction including the
functions mentioned above.

Resolution
The client has made the operator setting the only way of configuring
the vault color and fetches the color directly from the USDV
contract.

RESOLVED

LOW SEVERITY

Page of 36 77 VaultManager Paladin Blockchain Security

Issue #16 Lack of safeCast usage within various sections of the contract

Severity

Location Lines 283, 442, 451

int64 pending = int64(_amount);

pendingRemint[_color] -= int64(_amount);

pendingRemint[_color] += int64(_amount);

Description Throughout the codebase, a defensive approach is used and
amounts are converted with SafeCast and math is done with
checked operations. However, this is forgotten within the above
locations.

Although we do not believe these locations can be easily exploited
to overflow, we strongly believe that it makes sense for this
codebase to guarantee this through using SafeCast as this turns a
“belief” into a “guarantee”. The little amount of gas saved does not
stack up against security guarantees in our view.

Recommendation Consider using SafeCast for these locations, or at least explicitly
documenting the requirements for these lines not to overflow and
why these are never breached.

Resolution

INFORMATIONAL

RESOLVED

Page of 37 77 VaultManager Paladin Blockchain Security

Issue #17 Token inputs should be explicitly validated to be registered within
the contract’s functions that interact with tokens

Severity

Description There are various functions that interact with the collateral assets
such as mint, redeem, distributeReward, distributable,
redeemOut and setAssetEnabled. Many of these functions will
break if a non-registered token is provided which is desired.
However, with many of these, this breakage is implicit in, for
example, an underlying function reverting due to the calldata
being non-decodable for the zero address. This is less than ideal as
it causes essential behavior to be safeguarded with implicit “lucky”
checks.

If this contract is upgraded over time with new features, such
“lucky” checks might get refactored and omitted, causing these
functions to suddenly become callable with tokens which were
never registered.

Recommendation Consider adding a bool registered to the collateral struct and
consistently checking it for any collateral interaction including the
functions mentioned above.

Resolution

INFORMATIONAL

The non-view functions are now checked with an explicit
registration boolean.

RESOLVED

Page of 38 77 VaultManager Paladin Blockchain Security

Issue #18 Typographical issues

Severity

Description Line 14

import "../mocks/STBT.sol";

This import appears unused.

Line 28

uint8 internal constant usdvDecimals = 6;

Constants should be written in all caps.

Line 30

IUSDVMain internal usdv;

This variable can be marked as public to allow for users to inspect
it from within the browser.

Line 36

mapping(Role role => uint64 amount) roleFees;

This mapping can be marked as public to allow for users to inspect
it from within the browser.

Line 41

address[] public assets;

A getAssetsLength() function or similar should be exposed to
allow for querying this array effectively.

Line 59

_safeGetMinterInfo(_color);

This check is rather implicit, and we do not see the advantage of
this compared to actively checking the specific variable with a
requirement. It appears like this code is used because a side-effect
of it is that it reverts in case the color does not exist. Cleaner code
would use the exact code that only does the reversion logic.

INFORMATIONAL

Page of 39 77 VaultManager Paladin Blockchain Security

Line 64

address _usdv,

This variable can be directly provided as IUSDVMain to avoid casting
it later on.

Line 140

govInfo.roles[_role] = _addr;

It may make sense to validate that _role is one of the relevant roles
as the VAULT/MESSAGING roles are not used within this contract. This
applies to other sections of the contract as well where these roles
would not create a reversion. Leaving this unchanged is fine with us
however.

Line 171 and 379

if (fees > 0) {

if (reward > 0) {

Inverting these to a reversion makes the state-space smaller and
therefore more theoretically secure.

Line 178 and 380

usdv.transfer(_receiver, fees);

usdv.transfer(_receiver, reward);

The return value is not checked for this transfer. Although this is
currently fine as usdv never returns false, this could become an
issue if the usdv implementation is ever upgraded, which is a real
possibility. Consider using safeTransfer instead.

Line 180

emit WithdrewFees(msg.sender, fees);

The _receiver should probably be included in this event.

Page of 40 77 VaultManager Paladin Blockchain Security

Line 223

function remint(Delta[] calldata _deltas, uint64 _remintFee)

external nonReentrant whenNotPaused {

This array unnecessarily encodes multiple values. Consider splitting
it up into Delta calldata surplus, Delta[] calldata deficits.

Line 240

uint64 remintFee = i == lastBurntIdx

It might suffice to simply check that the delta is the last element in
the array, as an earlier check validates that all deltas are non-zero,
which we believe means that the last one should simply receive the
remainder.

Line 271

/// @dev if deficit colors are unknown, it will fail in

usdv.redeem, don't need to validate registered color here

This does not appear to explicitly fail and just ignores the color
instead. Explicit validation would make sense given that it reduces
the state spaces and therefore gives exploiters less freedom

Line 358

amounts[i] = rewardInUSDV;

This amount is emitted in a later event. However, the amount in
question is neither the gross nor the net fee amount. Instead, it
represents an intermediary calculation where a part of the fees are
already subtracted, but the LIQUIDITY_PROVIDER and OPERATOR fee
have not yet. We highlight this as we believe the client might have
preferred to emit the net value within that event.

—

Various hardcoded integers occur within the initializer and
distributeReward function. It may make sense to label these
constants and re-use the constants within the governance contract.

Page of 41 77 VaultManager Paladin Blockchain Security

The stbt definition within the initializer should probably re-use an
internal _registerAsset function instead of repeating code.

—

It should be noted that OWNER and FOUNDATION can call ping() on
behalf of the operator using the same role and address. Exception
logic might not be worth adding as this does not cause harm.

—

A sensible additional check in the remint / validateDeltas logic is
that the deficit deltas should be unique (e.g. ordered). This is
already guaranteed in other components of the system but if cross-
chain communication breaks this property can of course break as
well theoretically. Generally, validating more is not often bad.

—

A check should be in place to prevent a final color from being
added, as that index is already identified as “THETA”.

—

registerMinter, mint and redeemOut can be marked as external.

—

registerAsset, setAssetEnabled, setRole, setFeebBpsCap,
setFeeBps, registerMinter, setColorPaused, ping and
rotateMinter should emit an event.

Recommendation Consider fixing the typographical issues.

Resolution
Many of these issues have been resolved; the client did not address
some of them due to gas and contract side concerns.

RESOLVED

Page of 42 77 VaultManager Paladin Blockchain Security

2.3 vault/Asset

Asset is a library used by the VaultManager to store configurations and accounting
for the collateral assets. For each asset, the ERC20 token can be configured as well
as whether that asset is enabled. The library then keeps track of the number of
assets deposited into the VaultManager.

The Asset library also contains the logic to pull the token from the user’s wallet for
deposits and send it to the recipient for withdrawals. It should be noted that this
logic does not support tokens with a fee on transfer and also does not adhere to
checks-effects-interactions (an anti-reentrancy pattern), making the reentrancy
guards in the VaultManager vital.

The Asset library finally defines the calculation which calculates the number of
tokens eligible for distribution, which is essentially the current balance in the
VaultManager with the deposited tokens subtracted. We reiterate that the
VaultManager cannot support negative rebases as this subtraction would underflow
in that case.

Page of 43 77 Asset Paladin Blockchain Security

2.3.1 Issues & Recommendations

Issue #19 credit does not adhere to checks-effects-interactions

Severity

Description The credit function does not adhere to checks-effects-interactions,
which makes certain sections of the codebase vulnerable to
reentrancy. Most notably, the distributable() function within
VaultManager is vulnerable to a read-only reentrancy. Other
functions such as the actual distribute rewards functions do not
appear to be vulnerable due to the reentrancy guards within the
VaultManager, which is good.

Recommendation Given that balanceOf is used for distributable() calculations, it is
not easy to rewrite the Asset library to adhere to checks-effects-
interactions. We recommend being extremely careful with
reentrancy attacks throughout the codebase and triple-checking
that everything is guarded behind reentrancy guards (such as the
recommended extra functions to guard, see the VaultManager
issues).

Resolution
credit adheres to checks-effects-interactions now to the extent
where it is possible (given that balanceOf is still present in the
contract).

RESOLVED

LOW SEVERITY

Page of 44 77 Asset Paladin Blockchain Security

Issue #20 Typographical issues

Severity

Description Line 21

error TokenDecimalInvalid(uint provided, uint max);

This second parameter should likely be named “min” instead.

Line 24

function initialize(Info storage _self, address _token,

uint8 _shareDecimals) internal {

_token can be provided as IERC20Metadata to avoid casting it later
on.

Line 29

// set token2shareRate

This comment is outdated as the variable is now called
usdvToTokenRate.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Page of 45 77 Asset Paladin Blockchain Security

2.4 vault/Vault

Vault is a library that defines the logic for the rebase reward assignment to the
individual minters/colors. It is considered the central accounting unit for the USDV
token as a multi-chain token. Similar to the Colors library for the USDV tokens, this
library stores the supply for each color. Alongside this supply, reward assignment
variables such as the reward debt and the pending rewards are stored as well.

2.4.1 Issues & Recommendations

Issue #21 Gas optimizations

Severity

Description accumRewardPerShare could fit within the same slot as totalShares
as it does not appear to be possible to exceed the remaining bytes
for this variable. This would save a storage slot for the Vault info.

Within addShares, the storage value for the Info’s totalShares can
be cached to save gas. It is re-used in the Overflow check at this
moment.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

The first recommendation has been implemented.

PARTIALLY RESOLVED

Page of 46 77 Vault Paladin Blockchain Security

2.5 vault/Governance

Governance is a library used within the VaultManager to define the govInfo data
which includes the addresses which are assigned to roles like OWNER, OPERATOR and
FOUNDATION and their related fee data (fee and cap). It also defines the logic for the
operator liveliness ping and the logic to calculate and pay the redemption fee.

Page of 47 77 Governance Paladin Blockchain Security

2.5.1 Issues & Recommendations

Issue #22 safeFeeTransfer can be gas-griefed by an exploiter to avoid
paying the redemption fee in certain theoretical instances

Severity

Description safeFeeTransfer succeeds even if the fee transfer fails.

It is theoretically possible in certain cases that the fee transfer fails
due to an “out of gas” error while the subsequent code still
succeeds with the remaining portion of the gas. This is called a
“gas-griefing” and is most notably possible when the griefable code
call consumes a lot of gas (as this increases the gas remaining for
the final code).

As this call occurs on an arbitrary token, this could therefore occur
in practice and for certain tokens which waste a lot of gas on this
call compared to the subsequent calls, could allow for malicious
redeemers to bypass the fee.

Recommendation Consider refactoring this code to either use a sensible minimum
amount of gas, to keep these tokens in the vault instead as USDV or
to keep these tokens in the vault as a special accounting value.

The first recommendation feels the least intrusive while the second
one might be most desirable from a perfectionist perspective,
though it is much more intrusive.

Resolution
The try logic has been fully removed in favor of safeTransfer.

RESOLVED

MEDIUM SEVERITY

Page of 48 77 Governance Paladin Blockchain Security

Issue #23 safeFeeTransfer should use something like functionCall as it
will succeed even when calling an EOA

Severity

Description safeFeeTransfer will emit a success event even when it is called to
an EOA address. We instead recommend using something like
functionCall within OpenZeppelin’s Address.sol library which
checks that the bytecode is greater than zero.

It should be noted that Solidity always does this check as well when
making high-level calls, hence we recommend being consistent here
as well.

Recommendation Consider checking the token’s bytecode, e.g. with an
address(_token).code.length > 0 addition to the if statement.

Resolution
The try logic has been fully removed in favor of safeTransfer.

RESOLVED

LOW SEVERITY

Page of 49 77 Governance Paladin Blockchain Security

Issue #24 Typographical issues

Severity

Description Line 27

error InvalidArgument();

It seems odd to define this error as it is unused within this library.

Line 36

return (_amount * _self.fees[Role.FOUNDATION].bps) / 10000;

The ONE_HUNDRED_PERCENT literal can be re-used for 10000.

Lines 39-43

function payRedemptionFee(Info storage _self, IERC20 _token,

uint _amount) internal returns (uint afterFeeAmount) {

 afterFeeAmount = _amount;

 uint totalFee = getRedemptionFee(_self, _amount);

 afterFeeAmount -= safeFeeTransfer(_token, totalFee,

_self.roles[Role.OPERATOR]);

}

This can be more neatly refactored as the current implementation
can improve on semantics:

uint totalFee = getRedemptionFee(_self, _amount);

totalFee = safeFeeTransfer(_token, totalFee,

_self.roles[Role.OPERATOR]);

return _amount - totalFee;

——

ping lacks an event.

Recommendation Consider fixing the typographical issues.

Resolution
Almost all issues were resolved, however ping still does not have an
event.

RESOLVED

INFORMATIONAL

Page of 50 77 Governance Paladin Blockchain Security

2.6 USDV/USDVBase

USDVBase represents the core code for the USDV ERC20 deployments on all chains.
It is an upgradable contract which extends the ERC20PermitUpgradeable contract
for its ERC20 properties.

The contract defines the logic and conditions where a user’s account balance will be
recolored to a different minter than their current one. Specifically, recoloring of the
balance solely occurs if the user has not set their enforced color yet and if the
amount transferred to them exceeds their current balance. This means that an
amount sent to that user gets recolored to the user’s color even if it is greater than
the user’s balance, as long as that user has defined their enforced color. There is
therefore no way to recolor individual users as soon as they set their enforced color,
which is especially useful for smart contracts that will have a USDV balance, as
these contracts will want to typically attribute that USDV to a specific minter.

The user can define an account which is permitted to set their enforced color. This
is similar to granting that account “approval” but then specifically to set the
enforced color and not to make transfers for the user. This allowed account is
called the “colorer” for that user and can also be configured by the OPERATOR role.
This means that the OPERATOR can override the enforced color of any account by
reclaiming the colorer of that account and then setting their enforced color.
Subsequently, setEnforceColor can be called by the colorer (or by default the user
itself) to override the enforced color, which is NIL initially (e.g. undefined). If this
new enforced color is different to the one that the user’s balance is currently set to,
that balance is immediately recolored.

Tokens can be sent cross-chain using the send function. This deducts the provided
amount from the balance of the sender and will generate a message to send it to
the balance of the provided recipient on a desired chain. Tokens can only be sent to
chains configured in the MESSAGING contract, which are all chains USDV deploys to.
When sending tokens, the balance of the color on the source chain is decreased

Page of 51 77 USDVBase Paladin Blockchain Security

according to the amount. Subsequently, if there is any positive delta remaining, that
delta is reduced on the source chain (and converted into THETA) and forwarded to
the destination chain to be increased again there (taking from THETA). THETA is
allowed to go negative and will always sum to zero once all bridge transactions
arrive.

As the send function moves positive deltas to other chains together with a token
balance, there should probably also be a function to move the accompanied
negative delta to other chains (as both deltas eventually need to be reconsolidated
to allow them to be re-minted on the Ethereum chain). The function to do that is
called syncDelta which sends a negative delta to another chain. This can only be
done by transferring a positive THETA and only if the source chain has such a
positive THETA (e.g. it does not allow THETA to go negative). The goal of syncing
negative deltas is to eventually sync them to a chain which has positive deltas, to
subsequently remint them into the source chain.

The contract finally defines the internal remint calling logic, which is the logic which
nets out a positive delta with negative deltas and forwards them to the Ethereum
chain to incorporate the deltas into the supply allocations for the relevant minters.
This is in fact the crucial step at which point the deltas finally get synced to the
mainnet. It should be noted that to avoid economical abuse where minters try to
abuse the system, a remint fee is introduced. A portion of the remint fee goes to
the operator, while the remaining portion (presently planned as a larger portion)
goes to the minters of the deltas which were burned on remint. This means that
once you mint tokens as a minter and users do not redeem them again, it is
guaranteed that you eventually receive a remint fee if users swap your tokens into
another color as long as they actually sync this all the way back to the vault
manager. As long as it is not synced, you will continue generating rewards which is
fine as well.

The configured FOUNDATION role is able to add accounts to denylist which
prevents them from making any transfers.

Page of 52 77 USDVBase Paladin Blockchain Security

The OPERATOR role is able to pause and unpause the USDV token. While paused,
several functions revert: transfers, sending USDV to other chains, receiving USDV
from other chains, syncing delta to other chains, receiving delta sync from other
chains.

It should be noted that even though there is a remint fee to incorporate deltas into
the mainnet vault to update the accounting of which color/minter is attributed
which portion of the supply, this remint fee is not levied on ordinary recolors/delta
adjustments. That is, if a user’s color is changed, this incurs a delta adjustment
which might eventually get re-minted into mainnet’s accounting, but the fee is not
levied during the recolor and only gets levied on the actual remint.

UPDATE: We noticed that within the deployed contract, a sending rate limit has
been introduced. We informed the client that due to the lack of send fees, this limit
can be reached at no cost by a malicious actor, especially when set to a low value.

2.6.1 Privileged Functions
• setRole [OWNER or current role bearer]

• blacklist [FOUNDATION]

• setPause [OPERATOR]

• addColor [OPERATOR]

• setColorer [the user itself or the OPERATOR]

• setEnforceColor [colorer configured by the user or by the operator]

Page of 53 77 USDVBase Paladin Blockchain Security

2.6.2 Issues & Recommendations

Issue #25 An exploiter is able to keep negative deltas for prolonged periods
“in-flight”, preventing them from being settled to the mainnet

Severity

Description syncDelta sends negative deltas from one chain to another. This
can be done as long as the source chain has a positive THETA which
means there is a net surplus outflow on that chain.

Given that message transmission between chains is not
instantaneous and that calling syncDelta is free, an exploiter is able
to instantaneously call syncDelta repeatedly whenever the negative
deltas arrive on the destination chain. This would effectively cause
the negative deltas to permanently be in-flight, making it extremely
tedious for minters to recapture these deltas for re-minting. Even
worse, syncDelta provides an _extraOptions adapter parameter
value, which can be freely set by the sender. It may be possible for
the exploiter to figure out parameters that causes the message to
not automatically execute on the receipt chain (e.g. an incorrectly
formatted options which causes an exception on the off-chain
components).

This issue is rated as medium severity instead of high as it appears
like there are mitigation techniques to force slow re-mints of these
deltas by actively distributing positive deltas to all chains and then
re-minting them as soon as they capture some of the negative in-
flight deltas. However, given that the practical deployment will have
many colors and many different stakeholders, it may be more
complex to actively mitigate such an attack, hence still makes more
sense to mitigate it with for example a sync fee.

Recommendation Consider whether it makes sense to add another layer of defense
and burden for the syncer such as a sync fee. By sending this fee to
the OPERATOR, syncing remains free for the OPERATOR.

Resolution
A sync fee is now added, which goes to the operator.

RESOLVED

MEDIUM SEVERITY

Page of 54 77 USDVBase Paladin Blockchain Security

Issue #26 Lack of denylist and to validation on send increases the
likelihood of these tokens to be stuck in transit

Severity

Location Line 207

function send(

Description The function to send tokens cross-chain has less validation than the
function to transfer tokens from one account to another. However,
as this function also transfers tokens from one account to another, it
should do the same validations.

This is of course not always possible as the sending chain cannot
know about all states of the receive chain, but it should strive to be
as close as possible.

Specifically, the source chain should validate that the destination
address is not blacklisted at the source, and does not equal zero.
Specifically, the blacklisted check is a heuristic check and not a
perfect check given that the blacklisted set can have a divergence
across chains.

Recommendation Consider checking that the destination address is not zero or
blacklisted.

Resolution
The client has added a non-zero validation but opted against
denylist validation as there can be non-EVM chains with more
than 20 bytes of addresses. We believe that the denylist could still
be checked for the EVM compatible chains but the client has opted
against this, likely favoring gas savings.

RESOLVED

LOW SEVERITY

Page of 55 77 USDVBase Paladin Blockchain Security

Issue #27 Allowing operators to add colors manually could lead to
configurational errors

Severity

Location Line 74

function addColor(uint32 _color) external

onlyRole(Role.OPERATOR) {

Description Presently the USDV token allows for its operator to register colors.
However, the system already implements a color propagation
mechanism which is aimed to allow new colors to automatically
propagate to the side-chains once transfers are made from mainnet
to these chains (either directly or indirectly).

Given that this propagation methodology is relatively
straightforward, we see no immediate need to manually register
colors. Allowing for this to be easily done might lead to
configurational error. If a nonexistent color is added to a side-chain,
this can cause a lot of damage to the state of the system.

Recommendation Consider whether there is any case for registering colors manually
compared to propagating them through transfers.

If the function is kept, consider explicitly preventing the NIL color
(0) from ever being added.

Resolution

LOW SEVERITY

This function was removed.

RESOLVED

Page of 56 77 USDVBase Paladin Blockchain Security

Issue #28 Typographical issues

Severity

Description Line 18

bool public paused;

In other contracts, OpenZeppelin’s Pausable is used. It is unclear to
us why it is implemented here internally. Perhaps it makes sense to
be consistent across these various contracts.

Line 109

emit ColorerSet(_colorer);

It might make sense to emit _user in this event as well.

Line 116

uint64 amountU64 = _amount.toUint64();

It would be more consistent to revert with InsufficientBalance
here as well, given that the user indeed always has insufficient
balance here. This may make more sense to third party integrations
who are inspecting the errors.

Line 171

function _mintBalance(address _receiver, uint64 _amount,

uint32 _color) internal {

This should probably return whether the receiver got the color
assigned or not.

Line 351
uint32 idx = i - _startIdx;

This appears slightly inconsistent with getColors as idx is not used
there and this is inlined. We recommend adjusting either function to
make the style more consistent.

INFORMATIONAL

Page of 57 77 USDVBase Paladin Blockchain Security

getColors and getDeltas should be completed with a function that
returns the total number of colors/deltas to allow for more targeted
iteration.

—

It may make sense to be more explicit with the return values for
functions such as send and syncDelta as the caller cannot easily
figure out which theta, surplus and deltas were actually used. Of
course this does come at a gas cost as more data is returned.

Recommendation Consider fixing the typographical issues.

Resolution
Some of these informational recommendations were resolved.

PARTIALLY RESOLVED

Page of 58 77 USDVBase Paladin Blockchain Security

2.7 USDV/USDVMain

USDVMain represents the main USDV ERC20 deployment on the Ethereum mainnet (or
in general, the chain where the VaultManager is deployed). It differs from the
USDVSide implementation which is deployed on side-chains as the USDVMain
implementation is the sole token that actually mints and redeems USDV into the
VaultManager.

USDVMain extends USDVBase which is detailed in a previous section and therefore
inherits all descriptions, issues and limitations of that contract. It allows the
VaultManager to call mint on the contract to mint new USDV tokens. It also
facilitates redemption via a redeem function to the VaultManager which burns the
tokens from a user.

UPDATE: During the live match, we noticed the client moved mint and redeem into
USDVBase, allowing the team to call these on side chains in emergencies. We
recommend them to be careful with this as it may break crucial properties.

2.7.1 Privileged Functions
• setRole [OWNER or current role bearer]

• blacklist [FOUNDATION]

• setPause [OPERATOR]

• addColor [OPERATOR]

• setColorer [the user itself or the OPERATOR]

• setEnforceColor [colorer configured by the user or by the operator]

Page of 59 77 USDVMain Paladin Blockchain Security

2.7.2 Issues & Recommendations

Issue #29 remintAck lacks a whenNotPaused modifier when the fee is zero

Severity

Description The remintAck will revert due to being paused if a fee was set. This
is because the underlying _sendAck is called on that path and
triggers a reversion on pause.

However, when no fee is sent, this path is ignored and the remint
can just go through.

Recommendation Consider adding a whenNotPaused modifier to the remintAck
function that catches all paths.

Resolution

MEDIUM SEVERITY

RESOLVED

Issue #30 Colors appear to not be explicitly validated for the deltas

Severity

Description The deltas their colors appear to not explicitly be validated to exist.
This increases the attack surface of the contract for no reason.

Recommendation Consider validating all deltas in the various functions (e.g. in the
VaultManager contract and Colors library) consistently to reduce
the state space.

Resolution

INFORMATIONAL

RESOLVED

Page of 60 77 USDVMain Paladin Blockchain Security

2.8 USDV/USDVSide

USDVSide represents the USDV ERC20 deployments on side-chains (or in general the
chains other than where the VaultManager is deployed). They define the function
which can be called to re-mint to the main chain’s VaultManager.

USDVSide extends USDVBase which has been detailed in a previous section and
therefore inherits all descriptions, issues and limitations of that contract.

2.8.1 Privileged Functions
• setRole [OWNER or current role bearer]

• blacklist [FOUNDATION]

• setPause [OPERATOR]

• addColor [OPERATOR]

• setColorer [the user itself or the OPERATOR]

• setEnforceColor [colorer configured by the user or by the operator]

2.8.2 Issues & Recommendations

No issues other than the ones in USDVBase were found.

Page of 61 77 USDVSide Paladin Blockchain Security

2.9 USDV/Colors

Colors is a library used by all of the USDV token implementation as the accounting
ledger for each individual chain’s color supplies. It also accounts for each color’s
delta which represents the amount of tokens of that color that still need to
propagate to the main chain’s vault.

This library contains critical sections of code that deal with the evolution of these
delta accountancy and the THETA counterpart.

Page of 62 77 Colors Paladin Blockchain Security

2.9.1 Issues & Recommendations

Issue #31 NIL color could accidentally be added if communication
malfunctions or an operator adds it

Severity

Description The Colors library allows the NIL color to be added within the
addColor function. This color has a special meaning which is “non
existent” and should never be added.

This can specifically happen via an operator or through
malfunctioning communication.

It may also make sense to validate that mint’s color is not THETA
explicitly alongside potential other functions. This makes the state
space limitations more explicit, which is nice.

Finally, adding an additional validation for colors to be correct
within outflows might not hurt.

Recommendation Consider adding a requirement (not the if-clause!) that causes a full
revert as this state should never occur in our opinion.

Consider carefully checking that there is no such valid scenario,
however, we do not believe there is.

Resolution
A requirement has been introduced.

RESOLVED

LOW SEVERITY

Page of 63 77 Colors Paladin Blockchain Security

Issue #32 Typographical issues

Severity

Description Lines 63 and 125

int64 amountInt64 = int64(_amount);

int64 amountInt64 = -int64(_amount);

Although the fact that this cannot overflow is a property within
VaultManager, it is probably worth the handful of gas to revalidate
it here as the property could break if cross-chain communication
malfunctions. We believe that in general, this codebase should
swallow the handful of extra gas for any implicit casting to make
them checked.

Line 146

// not reverting 0 value because redeem can have 0 surplus

(burning minted only)

This input amount seems to still mean the full redemption amount
at this stage, making the comment potentially inaccurate.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 64 77 Colors Paladin Blockchain Security

2.10 USDV/Operator

Operator is managed by its Owner and is used as the OPERATOR role within the
USDV tokens.

It allows the owner to call the operator functions of the USDV token, and more
importantly defines the getRemintFees function that returns the remint minter and
operator fees for any input amount. This function is called within the remint logic
to figure out the fee to charge the remint caller. This means that the operator can
freely define this fee and is allowed to configure it to a point where the sum of the
two fees can even exceed the provided amount.

The initial remint fee sent to the operator is 0.01% while the remint fee sent to the
minter’s who have their supply reduced is 0.04%.

2.10.1 Privileged Functions
• rotateOperator

• withdrawToken

• setPause

• addColor

• setOperatorRemintFeeBps

• setMinterRemintFeeBps

• setColorer

• transferOwnership

• renounceOwnership

Page of 65 77 Operator Paladin Blockchain Security

2.10.2 Issues & Recommendations

Issue #33 Typographical issues

Severity

Description Line 18

constructor(address _usdv) Ownable() {

_usdv can be provided as IUSDV.

Line 28

if (_token == address(0)) payable(_to).transfer(_amount);

Consider using call instead as it allows transferring to contracts
which consume more gas on receipt such as custom vaults.

Line 29

else IERC20(_token).transfer(_to, _amount);

Consider using safeTransfer instead as this might ignore failure of
underlying tokens and malfunction for ill-specified ERC20 tokens
which do not return a boolean.

—

From a gas perspective, it may make sense to make the fee
percentages immutable if these are not planned to change often.
This would save on gas and changing them could still happen
through rotating the operator to a new address.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

Pretty much everything has been resolved, though the client has
opted for mutable fees, meaning the last suggestion was not
implemented, which is fine. The client has included a sync fee to
resolve one of our other issues and has also added minimum
absolute fees to remint and sync fees, which are freely
configurable.

RESOLVED

Page of 66 77 Operator Paladin Blockchain Security

2.11 USDV/Messaging

Messaging is a dependency used by MessagingV1 and the future MessagingV2
(out-of-scope of this audit).

It defines some shared functionality such as the address of the USDV token on that
chain, the eid of the main Ethereum chain, as long as whether this chain is that
Ethereum chain or not.

Finally, it provides a configurable mapping of the extra gas required of any given
message type.

2.11.1 Privileged Functions
• setPerColorExtraGas

• transferOwnership

• renounceOwnership

Page of 67 77 MessagingV1 Paladin Blockchain Security

2.11.2 Issues & Recommendations

Issue #34 Typographical issues

Severity

Description Lines 6 and 12

import "./libs/MsgCodec.sol";

using MsgCodec for bytes;

This import is unused and can be removed in favor of importing it in
the actual libraries. If desired, only the using clause can be
removed as that one definitely serves no purpose here.

Lines 14-15

uint32 internal immutable mainChainEid;

bool internal immutable isMainChain;

These variables should be marked as public to allow them to be
inspected from within the browser.

—

setPerColorExtraGas lacks an event.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

“extra gas” is now also segmented per destination chain, which
makes sense.

RESOLVED

Page of 68 77 MessagingV1 Paladin Blockchain Security

2.12 USDV/MessagingV1

MessagingV1 is the component used by the USDV deployments to send and receive
messages over the LayerZero network. It defines functions that USDV can use to
transmit a send, syncDelta and remint message to other changes. The first two
can be sent to any registered chain while the latter can only be sent to the main
Ethereum chain, as it is the message responsible for re-minting the color shares
correctly in the VaultManager to update the reward allocations there.

The MessagingV1 components extends NonBlockingLzApp (out of scope for this
audit), a utility contract developed by LayerZero to write applications on top of the
LayerZero endpoints. It should be noted that the NonBlockingLzApp is a governed
application, meaning that the owner address of MessagingV1 has full control over
the configuration of the messaging component. This includes the ability to receive
and by extension transmit false messages. It is therefore absolutely crucial that the
owner of this component is properly safeguarded behind a reputable multi-
signature wallet, alongside the other core governance roles and proxy admins within
the system.

On message receipt of any of these three messages, MessagingV1 decodes the
messages into understandable structures, which are forwarded to the USDV token
on that chain. The USDV token has MessagingV1 set as its MESSAGING role which
means that only this contract can forward messages to the USDV contract, unless
that role is adjusted to another contract using setRole.

This component extends the Messaging dependency.

It should be noted that a Buffer library (also out of this audit’s scope) is used to
concatenate the deltas into a packed bytes array. We agree that this is not possible
in Solidity and requires inline assembly which is desired to be done from a library
shared by multiple users. However, as this library is out of scope for this audit, we

Page of 69 77 MessagingV1 Paladin Blockchain Security

cannot speak for its validity. Users should carefully read the audits done on this
library as it appears like it was audited in the past for Ethereum Name Service.

2.12.1 Privileged Functions
• setPerColorExtraGas

• setConfig

• setSendVersion

• setReceiveVersion

• forceResumeReceive

• setTrustedRemote

• setTrustedRemoteAddress

• setPrecrime

• setMinDstGas

• setPayloadSizeLimit

• transferOwnership

• renounceOwnership

Page of 70 77 MessagingV1 Paladin Blockchain Security

2.12.2 Issues & Recommendations

Issue #35 The contract does not support retrying failed non-blocking
messages due to incorrectly overriding _nonblockingLzReceive

Severity

Location Lines 196-201

function _nonblockingLzReceive(

 uint16 _srcChainId,

 bytes memory _srcAddress,

 uint64 _nonce,

 bytes memory _payload

) internal override {}

Description _nonblockingLzReceive is not implemented as the client instead
overrides nonblockingLzReceive to keep the payload out of the
memory (this public function has it defined as calldata).

However, this public function is not always used within the
NonBlockingLzApp dependency.

NonBlockingLzApp::L84

_nonblockingLzReceive(_srcChainId, _srcAddress, _nonce,

_payload);

Unfortunately, the retry logic of the dependency still calls the
internal function. This means that failed messages cannot be
retried within this system and such messages would require the
team to intervene and redeploy a fixed Messaging contract that re-
submits the failed messages to the USDV token.

Recommendation Consider overriding the internal function instead.

Resolution
_nonblockingLzReceive is now overridden. Note that a custom
implementation is now used for NonBlockingLzApp. As this is out-
of-scope, changes compared to the trusted version should be
carefully checked by the team and users. To our knowledge, only
the memory field has been changed into calldata which is an
innocent change.

RESOLVED

HIGH SEVERITY

Page of 71 77 MessagingV1 Paladin Blockchain Security

Issue #36 The contract attempts to support LayerZero token payment
support but fails at doing so, bricking the contract if such a token is
ever configured

Severity

Location Lines 39, 66 and 94

msg.sender,

Description zroPaymentAddres, which is the address intended to pay for the
LayerZero token, is misconfigured to the msg.sender of the
messaging transaction. msg.sender is in fact the USDV token and
not the user.

Due to a requirement in the deployed contracts, this payer must
either be tx.origin or the app itself, causing the whole send
function to revert in such a case. This would therefore likely brick
the contract as soon as a LayerZero token is configured on the
endpoint.

Recommendation We do not necessarily like the usage of tx.origin here either as a
solution, as it is very prone to phishing risk. Instead, either simply
mark the address as unset to explicitly not support the token in this
version, or come up with a forwarding scheme where the user ends
up sending tokens to the MessagingV1 contract first (ideally through
an approval to the USDV token), which then forwards them to the
Endpoint.

Resolution
For V1, the payment address is now unset as this version does not
need to support such payments yet.

RESOLVED

MEDIUM SEVERITY

Page of 72 77 MessagingV1 Paladin Blockchain Security

Issue #37 Typographical issues

Severity

Description Line 22

) Messaging(_usdv, _mainChainEid, _isMainChain)

NonblockingLzApp(_endpoint) {}

A simple validation can be added within the body of the constructor
to check that the _mainChainEid equals the current chainId as
reported by the _endpoint if _isMainChain is set. This would
reduce configurational risk slightly.

Even better, _isMainChain should be derived from this check
directly. I.e., it should simply be set to the result of the comparison
of the provided _mainChainEid and the actual _endpoint eid. This
greatly reduces configurational risk and overhead.

Lines 41, 68 and 96

_msgFee.nativeFee

It is unclear what the advantage of this is compared to msg.value —
what happens if this value is lower than msg.value? Should equality
not be checked to avoid such a case?

Recommendation Consider fixing the typographical issues.

Resolution
msg.value is now used throughout the contract.

PARTIALLY RESOLVED

INFORMATIONAL

Page of 73 77 MessagingV1 Paladin Blockchain Security

2.13 USDV/MsgCodec

MsgCodec is a library used by MessagingV1 to handle the translation of raw bytes to
and from understandable Solidity types. It also does basic checking on the data
format.

It should be noted that the sendAndCall logic is not used within the audited code.

Page of 74 77 MsgCodec Paladin Blockchain Security

2.13.1 Issues & Recommendations

Issue #38 Typographical issues

Severity

Description Line 80

theta: uint64(bytes8(_message[THETA_OFFSET:]))

It would be more consistent to explicitly mark the up to portion of
the slice.

Line 111

composeMsg: _message[COMPOSED_MSG_OFFSET:]

It may make sense to validate that this is at least 32 bytes, as this is
the required minimum length. Note that this can also be directly
validated at the top of the function in the requirement mentioned at
a later point in this aggregated issue.

Line 194

return address(uint160(uint256(_b)));

Explicitly validate that there are no dirty bits on _b would help
detect configuration errors where a non-160 bit address was sent
into the system. Otherwise, this silently overflows which in our
opinion is undesired behavior. A reversion would allow for detection
and patching the mistake.

—

To be consistent, consider explicitly validating the lengths of
_message for decodeSendMsg (exact validation) and
decodeSendAndCallMsg (greater or equal validation).

—

Consider 1+4+8+8 as a const within encodeRemintMsg to
potentially save some gas.

INFORMATIONAL

Page of 75 77 MsgCodec Paladin Blockchain Security

There are still quite a few magic values (e.g. integers throughout the
codebase). This is typically avoided due to by code quality but we
leave it up to the client as to whether they want to extract these into
constants or not.

Recommendation Consider fixing the typographical issues.

Resolution
Most of these issues have been resolved. Length validation has been
added.

RESOLVED

Page of 76 77 MsgCodec Paladin Blockchain Security

Page of 77 77 MsgCodec Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Global Issues
	1.3.2 VaultManager
	1.3.3 Asset
	1.3.4 Vault
	1.3.5 Governance
	1.3.6 USDVBase
	1.3.7 USDVMain
	1.3.8 USDVSide
	1.3.9 Colors
	1.3.10 Operator
	1.3.11 Messaging
	1.3.12 MessagingV1
	1.3.13 MsgCodec

	2 Findings
	2.1 Global Issues
	2.1.1 Issues & Recommendations

	2.2 vault/VaultManager
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 vault/Asset
	2.3.1 Issues & Recommendations

	2.4 vault/Vault
	2.4.1 Issues & Recommendations

	2.5 vault/Governance
	2.5.1 Issues & Recommendations

	2.6 USDV/USDVBase
	2.6.1 Privileged Functions
	2.6.2 Issues & Recommendations

	2.7 USDV/USDVMain
	2.7.1 Privileged Functions
	2.7.2 Issues & Recommendations

	2.8 USDV/USDVSide
	2.8.1 Privileged Functions
	2.8.2 Issues & Recommendations

	2.9 USDV/Colors
	2.9.1 Issues & Recommendations

	2.10 USDV/Operator
	2.10.1 Privileged Functions
	2.10.2 Issues & Recommendations

	2.11 USDV/Messaging
	2.11.1 Privileged Functions
	2.11.2 Issues & Recommendations

	2.12 USDV/MessagingV1
	2.12.1 Privileged Functions
	2.12.2 Issues & Recommendations

	2.13 USDV/MsgCodec
	2.13.1 Issues & Recommendations

